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North Atlantic water mass transformation contributions to AMOC in eddy-parameterized and eddy-permitting simulations

Motivation

The Atlantic Meridional Overturning Circulation (AMOC) is an important component of 

the global climate system. Surface water mass transformation in the subpolar North At-

lantic facilitates the deep convection that contributes to the deep southern flowing 

branch of AMOC. Surface transformation is thus a valuable diagnostic for interpreting 

observations of overturning circulation and evaluating model AMOC performance.

Research question

How does surface water mass transformation contribute to overturning circulation 

in the subpolar gyre in eddy-parameterized vs. eddy-permitting ocean models?

Method

Water mass transformation is determined from surface net heat (Hnet) and freshwater (Fnet) 

fluxes based on the Walin (1982) framework. Temperature and salinity transformation 

are defined by Evans et al. (2014).

Density transformation

Temperature transformation

Salinity transformation

Simulations

Model for Prediction Across Scales (MPAS)
• Ocean and sea ice components (MPAS-Ocean, MPAS-Seaice)

• Unstructured hexagonal mesh, allows regional refinement of horizontal resolution

• Part of the DOE Energy Exascale Earth System Model (E3SM) (Golaz et al., 2022)

Configurations
• Low Resolution (LR), 30-60 km, Gent-McWilliams mesoscale eddy parameterization

• High Resolution (HR), 6-18 km, mesoscale eddy permitting/resolving

Forcing
• Coordinated Ocean-ice Reference Experiments II (CORE-II) protocol

- Reanalysis + observations, 1948-2009 record

Simulation biases (years 50-60)
AMOC mean state and time series at 26.5 N

Surface tracers and mixed layer depth in the subpolar gyre

Early simulation biases (years 0-10)
Subpolar gyre circulation

Transport and density through the OSNAP line

Water mass analysis
Surface transformation maps (HR minus LR)

Surface transformation and net import/export by region
• Temperature and salinity transformation plotted together as vectors in T-S space

• Net transport into (out of) each region binned by T, S and contoured in blue (red)

Key points

1. Water mass analysis in temperature-salinity space can reveal important circu-

lation features related to AMOC.

2. Water mass transformation continuously cools and freshens the subpolar gyre 

between the Iceland Basin and Labrador Sea.

3. The absence of this pathway (e.g., at LR) may interrupt the subpolar gyre over-

turning, preventing deep AMOC-related water masses from forming

Figure 2 AMOC stream function time series at 26.5 degrees N and time mean.

Figure 3 Annual surface temperature and salinity and Jan-Mar mixed layer depth biases 
relative to observations. Temperature is from the merged Hadley Center-NOAA/OI data 
set (Hurrell et al., 2008). Salinity is from the NASA Aquarius satellite (Fore et al. 2016). 
Mixed layer depth is from an ARGO float climatology (Holte et al., 2017).

Figure 5 Poleward velocity (blue/red) and potential density (black contours) 
at the OSNAP line (see Fig. 1).

Figure 4 Surface to 1000 m averaged velocity fields.

Figure 1 Map of the subpolar North Atlantic showing bathymetry, water mass analysis 
regions and subpolar gyre circulation. Regions are bounded equatorward by the Over-
turning in the North Atlantic Program (OSNAP) observing lines (Lozier et al., 2019).
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Figure 6 Surface transformation maps obtained as the integrand of the transformation 
equation at selected density, temperature (T) or salinity (S) bins. “Upstream” bins are 
light, warm and salty. “Downstream” bins are dense, cold and fresh.

Figure 7 Surface T-S transformation (arrows) and net import (blue) and export (red) 
transports by region. Potential density contours are shown in gray.
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